Index

A C D E G L M N O R S U 
All Classes All Packages

A

AlternatingLeastSquaresMatrixFactorization - Class in org.dulab.javanmf.algorithms
This class performs non-negative matrix factorization using the alternating non-negative least squares method.
AlternatingLeastSquaresMatrixFactorization(double, int) - Constructor for class org.dulab.javanmf.algorithms.AlternatingLeastSquaresMatrixFactorization
AlternatingLeastSquaresMatrixFactorization(Constraint, Constraint, double, int) - Constructor for class org.dulab.javanmf.algorithms.AlternatingLeastSquaresMatrixFactorization
apply(DMatrixRMaj) - Method in interface org.dulab.javanmf.algorithms.Constraint
 
apply(DMatrixRMaj) - Method in class org.dulab.javanmf.algorithms.DefaultConstraint
 

C

Constraint - Interface in org.dulab.javanmf.algorithms
 

D

decompose(DMatrixRMaj, DMatrixRMaj) - Method in class org.dulab.javanmf.algorithms.SingularValueDecomposition
Performs non-negative singular value decomposition (NNDSVD) of matrix X.
DefaultConstraint - Class in org.dulab.javanmf.algorithms
 
DefaultConstraint() - Constructor for class org.dulab.javanmf.algorithms.DefaultConstraint
 

E

EuclideanDistance - Class in org.dulab.javanmf.measures
Calculates the distance between matrices X and WH using the euclidean distance || X − WH ||2
EuclideanDistance() - Constructor for class org.dulab.javanmf.measures.EuclideanDistance
 
execute(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) - Method in class org.dulab.javanmf.algorithms.MatrixFactorization
Performs the non-negative matrix factorization with given initial matrices W and H.
execute(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj, boolean) - Method in class org.dulab.javanmf.algorithms.MatrixFactorization
Performs the non-negative matrix factorization with given initial matrices W and H.

G

get(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) - Method in class org.dulab.javanmf.measures.EuclideanDistance
 
get(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) - Method in class org.dulab.javanmf.measures.Measure
Returns distance between matrices X and WH

L

lambda - Variable in class org.dulab.javanmf.updaterules.RegularizationUpdateRule
l1-regularization coefficient

M

MatrixFactorization - Class in org.dulab.javanmf.algorithms
This class performs non-negative matrix factorization: for given matrix X, find matrices W and H that minimize the objective function
MatrixFactorization(UpdateRule, UpdateRule, double, int) - Constructor for class org.dulab.javanmf.algorithms.MatrixFactorization
Creates an instance of MatrixFactorization
MatrixRegression - Class in org.dulab.javanmf.algorithms
This class performs non-negative matrix regression: for given matrices X and W, find matrix H that minimizes the objective function
MatrixRegression(UpdateRule, double, int) - Constructor for class org.dulab.javanmf.algorithms.MatrixRegression
Creates an instance of MatrixRegression
MatrixUtils - Class in org.dulab.javanmf.algorithms
 
MatrixUtils() - Constructor for class org.dulab.javanmf.algorithms.MatrixUtils
 
measure - Variable in class org.dulab.javanmf.updaterules.UpdateRule
Instance of Measure associated with this update rule
Measure - Class in org.dulab.javanmf.measures
Provides a template for calculating the distance between matrices X and WH
Measure() - Constructor for class org.dulab.javanmf.measures.Measure
 
minimumEquals(DMatrixRMaj, DMatrixRMaj) - Static method in class org.dulab.javanmf.algorithms.MatrixUtils
 
mu - Variable in class org.dulab.javanmf.updaterules.RegularizationUpdateRule
l2-regularization coefficient
MUpdateRule - Class in org.dulab.javanmf.updaterules
Performs multiplicative update for the euclidean distance with regularization
MUpdateRule(double, double) - Constructor for class org.dulab.javanmf.updaterules.MUpdateRule
Creates an instance of MUpdateRule with given regularization coefficients

N

NonNegativeLeastSquares - Class in org.dulab.javanmf.algorithms
This class solves the non-negative least squares problem using the active set method.
NonNegativeLeastSquares() - Constructor for class org.dulab.javanmf.algorithms.NonNegativeLeastSquares
 

O

org.dulab.javanmf.algorithms - package org.dulab.javanmf.algorithms
Provides classes for performing non-negative matrix factorization, non-negative matrix regression, and non-negative singular value decomposition.
org.dulab.javanmf.measures - package org.dulab.javanmf.measures
Provides classes for estimating the distance between matrices X and WH.
org.dulab.javanmf.updaterules - package org.dulab.javanmf.updaterules
Provides classes for updating matrix H in the direction of minimising the distance D(X, WH).

R

RegularizationUpdateRule - Class in org.dulab.javanmf.updaterules
Provides a template for updating matrix H in the direction of minimizing the distance D(X, WH) with regularization
RegularizationUpdateRule(Measure, double, double) - Constructor for class org.dulab.javanmf.updaterules.RegularizationUpdateRule
Creates an instance of RegularizationUpdateRule with given regularization coefficients

S

SingularValueDecomposition - Class in org.dulab.javanmf.algorithms
This class performs non-negative singular value decomposition: first, the singular value decomposition is performed; then, the non-negative matrices W and H are formed.
SingularValueDecomposition(DMatrixRMaj) - Constructor for class org.dulab.javanmf.algorithms.SingularValueDecomposition
Creates an instance of SingularValueDecomposition for given matrix
solve(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) - Method in class org.dulab.javanmf.algorithms.AlternatingLeastSquaresMatrixFactorization
Performs non-negative matrix regression with the upper limit constraint
solve(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) - Method in class org.dulab.javanmf.algorithms.MatrixRegression
Performs non-negative matrix regression
solve(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) - Method in class org.dulab.javanmf.algorithms.NonNegativeLeastSquares
Finds matrix D such that D = argmin || X - Z x D ||^2
solve(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj, boolean) - Method in class org.dulab.javanmf.algorithms.AlternatingLeastSquaresMatrixFactorization
Performs non-negative matrix regression with the upper limit constraint
solve(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj, boolean) - Method in class org.dulab.javanmf.algorithms.MatrixRegression
Performs non-negative matrix regression
solve(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) - Method in class org.dulab.javanmf.algorithms.MatrixRegression
Performs non-negative matrix regression with the upper limit constraint
solve(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj, DMatrixRMaj, boolean) - Method in class org.dulab.javanmf.algorithms.MatrixRegression
Performs non-negative matrix regression with the upper limit constraint

U

update(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) - Method in class org.dulab.javanmf.updaterules.MUpdateRule
 
update(DMatrixRMaj, DMatrixRMaj, DMatrixRMaj) - Method in class org.dulab.javanmf.updaterules.UpdateRule
Updates matrix H to minimize distance between X and WH
UpdateRule - Class in org.dulab.javanmf.updaterules
Provides a template for updating matrix H in the direction of minimizing the distance D(X, WH)
UpdateRule(Measure) - Constructor for class org.dulab.javanmf.updaterules.UpdateRule
Creates an instance of UpdateRule
A C D E G L M N O R S U 
All Classes All Packages