Class AlternatingLeastSquaresMatrixFactorization

java.lang.Object
org.dulab.javanmf.algorithms.AlternatingLeastSquaresMatrixFactorization

public class AlternatingLeastSquaresMatrixFactorization
extends java.lang.Object
This class performs non-negative matrix factorization using the alternating non-negative least squares method. See H. Kim and H. Park "NON-NEGATIVE MATRIX FACTORIZATION BASED ON ALTERNATING NON-NEGATIVITY CONSTRAINED LEAST SQUARES AND ACTIVE SET METHOD"
Author:
Du-Lab Team dulab.binf@gmail.com
  • Constructor Summary

    Constructors 
    Constructor Description
    AlternatingLeastSquaresMatrixFactorization​(double tolerance, int maxIteration)
    AlternatingLeastSquaresMatrixFactorization​(Constraint wtConstraint, Constraint hConstraint, double tolerance, int maxIteration)
  • Method Summary

    Modifier and Type Method Description
    void solve​(org.ejml.data.DMatrixRMaj x, org.ejml.data.DMatrixRMaj w, org.ejml.data.DMatrixRMaj h)
    Performs non-negative matrix regression with the upper limit constraint
    void solve​(org.ejml.data.DMatrixRMaj x, org.ejml.data.DMatrixRMaj w, org.ejml.data.DMatrixRMaj h, boolean verbose)
    Performs non-negative matrix regression with the upper limit constraint

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

  • Method Details

    • solve

      public void solve​(@Nonnull org.ejml.data.DMatrixRMaj x, @Nonnull org.ejml.data.DMatrixRMaj w, @Nonnull org.ejml.data.DMatrixRMaj h, boolean verbose)
      Performs non-negative matrix regression with the upper limit constraint
      Parameters:
      x - matrix of shape [Npoints, Nvectors], a collection of vectors in Npoints-dimensional space
      w - matrix of shape [Npoints, Ncomponents], a collection of components
      h - matrix of shape [Ncomponents, Nvectors], a collection of the decomposition coefficients
      verbose - flag to output verbose information
    • solve

      public void solve​(@Nonnull org.ejml.data.DMatrixRMaj x, @Nonnull org.ejml.data.DMatrixRMaj w, @Nonnull org.ejml.data.DMatrixRMaj h)
      Performs non-negative matrix regression with the upper limit constraint
      Parameters:
      x - matrix of shape [Npoints, Nvectors], a collection of vectors in Npoints-dimensional space
      w - matrix of shape [Npoints, Ncomponents], a collection of components
      h - matrix of shape [Ncomponents, Nvectors], a collection of the decomposition coefficients